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On the transition from two-dimensional
to three-dimensional MHD turbulence

By A. Thess 1 and Oleg Zikanov

We report a theoretical investigation of the robustness of two-dimensional inviscid
MHD flows at low magnetic Reynolds numbers with respect to three-dimensional pertur-
bations. We analyze three model problems, namely the flow in the interior of a triaxial
ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to
the magnetic field. We demonstrate that motion perpendicular to the magnetic field with
elliptical streamlines becomes unstable with respect to the elliptical instability once the
velocity has reached a critical magnitude whose value tends to zero as the eccentricity of
the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field,
which are unstable for any velocity and any magnetic field, are found to emit eddies
with vorticity perpendicular to the magnetic field and with an aspect ratio proportional
to N'/2. The results suggest that purely two-dimensional motion without Joule energy
dissipation is a singular type of flow which does not represent the asymptotic behavior
of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.

1. Introduction

Turbulent flows of liquid metals influenced by magnetic fields occur under a wide range
of circumstances, ranging from metallurgy (Davidson 1999) and fundamental turbulence
research (Tsinober 2001; Moresco & Alboussiere 2004) to the movement of the Earth’s
inner core (Moffatt 1978). It is widely believed that when the magnetic Reynolds number
Rm = pooUL is small, and the magnetic field is sufficiently strong, homogeneous MHD-
turbulence becomes purely two-dimensional and the electromagnetic dissipation of kinetic
energy vanishes. The purpose of the present work is to demonstrate that this belief often
contradicts to reality, and that homogeneous MHD-turbulence may differ strongly from
purely two-dimensional turbulence even when the magnetic field tends to infinity.

When an incompressible fluid with density p, kinematic viscosity v, electrical conduc-
tivity o, and permeability pg moves with velocity U and characteristic length scale L in
a uniform magpnetic field B, and when Rm < 1, the state of the flow is characterized by
the Reynolds number and the electromagnetic interaction parameter defined as

_ UL ocB%L

= N= .
Re o i

(1.1)

We are interested in fully developed turbulence (Re — oo) far away from walls under
a strong magnetic field N >> 1. It has been established by Moffatt (1967) (see also
Davidson 1997) and confirmed experimentally by Alemany et al (1979) and numerically
by Schumann (1976), Zikanov & Thess (1998), Knaepen & Moin (2004) that the turbulent
flow tends to become two-dimensional so as to avoid electromagnetic (Joule) dissipation.
Sommeria & Moreau (1982), who identified the importance of walls perpendicular to the
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FIGURE 1. Wavenumber distribution of kinetic energy at N >> 1.

magnetic field, have aptly summarized our conceptual understanding of MHD turbulence
at N >> 1 by characterizing the distribution of kinetic energy among the wavenumbers
k. and k) perpendicular and parallel to the magnetic field, respectively. This distribution
of kinetic energy in the state of so called “quasi-two-dimensional turbulence” is sketched
in figure 1. For N >> 1 the kinetic energy of the flow is confined to a narrow region in the
wavenumber space, outside the “Joule cone” in which electromagnetic energy dissipation
takes place and below those wavenumbers k; for which viscous dissipation dominates.
The angle ¢ ~ N~1/2 of the energy containing region shrinks to zero as N — oo. This
picture has tempted researchers to assume that for sufficiently strong magnetic field
quasi-two-dimensional MHD turbulence becomes purely two-dimensional and the Joule
energy dissipation vanishes.

However, there have been strong experimental and numerical indications which sug-
gest that this hypothesis is unlikely to be correct. In their experiments on freely decaying
homogeneous MHD turbulence in mercury Alemany et al. (1979) and Caperan & Ale-
many (1985) found that velocity fluctuations parallel to the applied magnetic field and
strong Joule dissipation persisted even at high interaction parameters. Disagreements
between drag measurements of MHD flows in channels with very large aspect ratios (low
influence of Hartmann walls) (Tsinober 1990) and purely two-dimensional numerical
simulations of turbulent channel flow by Jimenez (1990) further support the view that
quasi-two-dimensional turbulence may never become purely-two-dimensional. Direct nu-
merical simulations of forced MHD turbulence by Zikanov & Thess (1998) indicated that
two-dimensional vortices, once they have formed, may undergo violent three-dimensional
instabilities resulting in an intermittent behavior. Finally, numerical simulations of MHD
turbulence subject to a two-dimensional forcing, which have been carried out by Nakauchi
et al. (1992) using an EDQNM model, have provided evidence that even for very high
values of the interaction parameter and strong non-isotropy of the flow, the Joule energy
dissipation of the flow tends to a nonzero finite value.

The foregoing observations lead us to the conclusion that purely two-dimensional tur-
bulence with zero Joule dissipation is a singular state which may never be reached in
MHD, similarly as ordinary hydrodynamic turbulence in the limit of vanishing viscosity
will never come close to a state of zero viscous dissipation. We may formulate the follow-
ing hypothesis: When an electrically conducting fluid is in the state of fully developed
turbulence (¥ — 0) the Joule dissipation of kinetic energy will remain finite as B — co.

In this paper we investigate the singular character of purely two-dimensional turbulence
using stability analysis of model problems. We shall demonstrate that for arbitrarily
strong magnetic fields a two-dimensional inviscid flow has always access to a sufficient
number of unstable degrees of freedom to escape from purely two-dimensional behavior.
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2. A didactical model for the instability of purely two-dimensional MHD flow

2.1. An exact solution for inviscid MHD flow in a triazial ellipsoid

Consider an inviscid electrically conducting incompressible fluid which is confined to the
interior of the triaxial ellipsoid

2 2
- =1 (2.1)

2y z
and subjected to the influence of a homogeneous magnetic field B = Be,. If the magnetic
Reynolds number is small, the dynamics of the flow is governed by the equations

%—F(v-V)V:—%Vp—F%JXB; V-v=0 (2.2)

J=0(-Vé+vxB), V-J=0 (2.3)

where J is the electric current density and ¢ the electric potential (Roberts 1967; Moreau
1990; Davidson 2001). The equations are supplemented by the boundary conditions at
impermeable electrically insulating walls of the ellipsoid

v.-n=J-n=0. (2.4)

If there is no magnetic field, there exists a family of three-dimensional time-dependent
exact solutions of the Euler equations

Va0 = U0 [

e, — zg ey] + V(%) [z% e, — ;cg ez] +W(t) [wg e, — y% ew] ,
(2.5)

where (U, V, W) satisfy the nonlinear ordinary differential equations, which are mathe-
matically identical to the equations describing the free rotation of a solid body (Kerswell
2002). The velocity field described by (2.5) automatically satisfies the incompressibility
constraint, the free-slip condition, and is a superposition of three basic two-dimensional
flows. Each of them has elliptical streamlines and a spatially uniform vorticity directed
along the axis of the ellipsoid which is perpendicular to the plane of motion.

We extend the existing theory to the case when a magnetic field is present by expressing
the electric current density in the form

J(z,y,2,t) = I(t) {yg e, — zg ey] + J(t) [z% ey — arg ez] + K(t) [wg ey — y% em] (2.6)
which satisfies the condition V -J = 0 as well as the boundary condition. The coefficients
1,J, K describe the strength of eddy currents induced by the movement of the fluid in
the magnetic field. Taking the curl of Ohm’s law (2.3) we obtain, after some algebra,
I = 6BVab/(b?> + ), J = —oBUab/(a*® + ¢*), K = 0. The vorticity & = V x v
corresponding to the velocity field (2.5)

Q=U@) (” ; g) e+ V() (4 +5) e+ W (g i 9) . (7

satisfies exactly the vorticity equation

o 1
5 = (-V)v+ ;V x (J x B), (2.8)
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provided that the coefficients U, V, W obey the equations

. oB? a’b?
(b2 + 02)U = (b2 — C2)VW — T (m) U (29)
. oB? a?b?
(02 + a2)V = (C2 - GZ)UW - T (m) Vv (210)
(a® + YW = (a® — b )UV (2.11)

It should be emphasized that the derivation of this system from the governing equations
(2.2) and (2.3) did not involve any approximation.

The system (2.9)-(2.11) can be made nondimensional by introducing dimensionless
variables according to (U, V,W) = a(U., Vi, W,) and ¢t = t./a where
a = (6B?/p)a®b?/[(a® + c)(b? + ¢?)] is the inverse of the Joule decay time. Using the
abbreviations A = a/c and B = b/c and dropping the asterisk the equations become

. B?2-1
= - - 2.12
U= gy VWU (2.12)
o1 A?
V=1 UW-V (2.13)
. A? - B?

This nonlinear system has a number of remarkable properties. The nonlinear terms con-
serve the total kinetic energy and the total angular momentum

E= % [(1+B)U? + (1 + A%)V? 4+ (42 + BY)W?] (2.15)

L= (1+DB*%U?+ (1+ A?)?V? + (A% + B*)*W? (2.16)

The magnetic field gives rise to an anisotropic damping, embodied in the linear dissipative
terms on the right-hand-side of equations (2.12) and (2.13). The total kinetic energy obeys
dE

dt

where € = (1 + B?)U? + (1 + A%)V?2 is the rate of Joule dissipation. As a result, the
kinetic energy of the flow will always decay unless it is in a purely two-dimensional
motion perpendicular to the magnetic field (U = V = 0,W # 0). Observe that the
electromagnetic interaction parameter N (cf. equation (1.1)) does not appear in the

system because we have used the Joule timescale a~! to nondimensionalize the velocity.
Instead, the values of U, V, and W represent the order of magnitude of N.

= —¢ (2.17)

2.2. Linear stability of steady states

Equations (2.12)-(2.14) admit a steady solution (U,V,W) = (0,0, W,) describing two-
dimensional motion perpendicular to the magnetic field. We analyze the linear stability
of this solution by solving the equations for infinitesimal perturbations (£,7, ()

. B2 —

§=-¢+ (B2——I-1WO) n (2.18)
_ A2

n= (L_—A2W0> §—n (2.19)

¢=0. (2.20)
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The solvability condition yields the growth rates A in the form

2 _ — B2

(A2 +1)(1 + B?)

Instability occurs when A > 1,B < 1 or A < 1,B > 1, i.e. when the magnetic field
is parallel to the middle axis of the ellipsoid and the W-component exceeds the critical
value

A2+1)A+B%) L aim _ 0B? [(a® +¢*)(c? + 1)
W, = \/(A2 1A= B or, in dimensional form, W™ = p (@ =)@ =)

(2.22)
When a — oo and b — 0 we have W, — 1 and W™ — 5 B2 /p which implies that a very
elongated sheet-like structure becomes unstable when the interaction parameter defined
as N = 0B%/pW is smaller than N, = 1.

The instability that we have identified in this particular MHD problem is the elliptical
instability, widely known in ordinary hydrodynamics as a fundamental mechanism for
the transition to turbulence (see, e.g., Kerswell 2002). It is generated by parametric
resonance between Kelvin waves, coming from the homogeneously rotating part of the
velocity field, and the strain field, being a result of the elliptical shape of the streamlines.
We have just shown that a magnetic field can damp but not completely suppress this
instability.

2.3. Nonlinear dynamics and the singular character of purely two-dimensional motion

We now analyze the nonlinear evolution of the system focusing the attention on the case
where the initial state is an almost two-dimensional flow characterized by U(0) <« W (0)
and V(0) < W(0). Solution of (2.12)-(2.14) for A = 2 and B = 0.5 shows that as
long as W(0) < W, = 5/3, the system always relaxes to a purely two-dimensional state
(U =0,V =0,W < W,). Figure 2 shows that the evolution from an initial condition
with W (0) > W, proceeds in a quite different way. Although the system finally settles
at a purely two-dimensional state, the evolution towards this state is characterized by
long periods of nearly two-dimensional motion, occasionally interrupted by violent three-
dimensional transients. During these transients kinetic energy is fed from the nondis-
sipative two-dimensional mode W to the three-dimensional modes U and V' as can be
seen in figure 2c. The transients lead to significant Joule dissipation of kinetic energy
as illustrated in figures 2b and 2d. Decay of initially almost two-dimensional MHD flow
is accompanied by strong divergence from two-dimensionality due to the action of the
elliptical instability.

The singular character of purely two-dimensional evolution is further illustrated by
extending our model so as to include a phenomenological forcing term, which corresponds
to application of an external torque in the z-direction. Equation (2.14) is replaced by

A2_B2

The new model admits an exact two-dimensional solution
U=0, V=0, W=t (2.24)

whose kinetic energy grows monotonically with time and whose Joule dissipation is zero.
However, the numerical solution computed from a weakly three-dimensional initial con-
dition shows a completely different behavior. The flow corresponding to the numerical
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FIGURE 2. Decaying solution of (2.12-2.14). (a), Two-dimensional component W (t). (b), Total
kinetic energy (2.15). (¢), Three-dimensional components U(t) (solid line) and V'(¢) (dashed
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FIGURE 3. As in Figure 2 but for forced system (2.12, 2.13, 2.23).

solution shown in figure 3 is periodic in time and involves long lasting periods of two-
dimensional motion interrupted by short three-dimensional excursions. Most importantly,
the flow is ”statistically” steady in that the time-averaged kinetic energy does not change
and the mean Joule dissipation is finite. The flow is therefore neither mathematically nor
physically close to the two-dimensional behavior suggested by the exact solution (2.24).
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Although our simple model is only a caricature of the behaviour of real MHD turbu-
lence, it allows us to draw a number of conclusions which serve as a guideline for the
investigation of the full problem. In particular, we have learned

e that a purely two-dimensional MHD flow is prone to the elliptical instability,

¢ that the nonlinear three-dimensional evolution of the elliptical instability effectively
extracts kinetic energy from the system on account of Joule dissipation,

¢ that an initially nearly two-dimensional flow does not necessarily stay close to purely
two-dimensional evolution.

3. Instability in two-dimensional turbulence in a strong magnetic field
For further analysis it is convenient to rewrite (2.2) and (2.3) as (Roberts 1967)
o B Oy
ot p 022’

We are interested in the stability of two-dimensional flows for which the Joule dissipation
vanishes. The most general flow of this type is of the form

+(v-V)v:—%Vp— V-v=0. (3.1)

v(z,y,t) = U(z,y,t) + W(z,y,t)e; (3:2)
where U has the properties U-e, =0, V-U =0 and U and W are solutions of
ou 1 ow
—+U-V)U=--VP, —+(U-V)W=0 3.3
5 +(U-V)U= VP, "4 (U-V) (33)

The two terms in (3.2) describe the superposition of a two-dimensional motion perpen-
dicular to the magnetic field with a motion parallel to the magnetic field.

Our hypothesis formulated in section 1 implies that the solution (3.2) of equation
(3.1) is always unstable in the sense that for any initial condition containing a weak
three-dimensional perturbation the solution will diverge from the two-dimensional one
and evolve towards a solution with nonzero mean Joule dissipation no matter how strong
the magnetic field is. A rigorous proof of this assertion is a formidable task, as it would
require consideration of the initial value problem (3.1) for all admissible fields U and V.
We shall simplify the task considerably by considering two families of structures which
we believe are representative of the solutions to (3.3) namely, columnar vortices with
elliptical streamlines and vortex sheets whose velocity is parallel to the direction of the
magnetic field.

3.1. Instability of motion perpendicular to the magnetic field
We consider an unbounded strained vortex described by

U(z,y) = —QEye, + QE " 'ze, (3.4)

When the eccentricity E = 1, the flow is a solid body rotation around the axis of the

magnetic field with vorticity 22. When E > 1, the flow has a uniform strain and its

streamlines are ellipses with semi-axes a = VE and b =1 / VE. We extend the analysis

of Bayly (1986) and Waleffe (1990) to the magnetic case by perturbing the basic flow

(3.4) according to v = U+u. Linearizing (3.1) with respect to the perturbation we obtain
Ou 0%u

L -1
—+(U-V)u+(u-V)U=—EVp—aA 352

5 V-u=0. (3.5)
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where a = 0 B2 /p. This system admits solutions of the form

1 k2 (tl)
z dtl:|
to K*(t)

fu, p} = {8, $}1) - exp [ik(t) x—a (3.6)

Inserting (3.6) into (3.5) we obtain equations identical to those for the nonmagnetic
problem solved by Bayly (1986) and Waleffe (1990).

ﬁj + iklxlﬁj + ikmAml:L'lﬂj + Ajl’ﬁ,l = _ikjﬁ, kjﬁj =0, (37)
where Ao = —QF, Ay = Q/E and A;; = 0 otherwise. The solution includes the
wavenumber vector k rotating around the axis of the vortex as

k(t) = ko[sin 8 cos ¢(t), E sin 0 sin ¢(t), cos 6] (3.8)

where ¢(t) = Q(t — o), and the Floquet solution @(t) = e*w[¢(t)], where w is a 27-
periodic function and the growth rate is

NQ, E,0) = % In[p(E, 6)]. (3.9)

Here, p are eigenvalues of an auxiliary eigenvalue problem. The amplitude of perturba-
tions is

lu(®)] = [w(t)| - exp[F(8)] (3.10)
with
¢ cos? 6dt’
F(t) = \(E, 0,Q)t (311
(®) ( Ji-a /to sin® § cos? Q(t' — t)) + E'sin® 0 cos2 Q(t' — t})) + cos? § (3-11)

The second term in the right-hand-side is the only correction to the non-magnetic so-
lution. Reverting to dimensionless time ¢ = Q(t — t9) and using a magnetic interaction
parameter defined by

N =a/Q=0B?/pQ (3.12)

we can express F' as

¢

¢ d¢’
F(¢) = o In[u(E,0)] - N/o 1 + tan® f[co :

s2 ¢' + Esin® ¢']
The system is unstable if F increases over one period, i.e. F'(27) — F(0) > 0, it is stable

if F(2m) — F(0) < 0 and the condition for neutral stability is therefore F(27) — F/(0) = 0.
From the last condition we obtain the desired expression for the neutral surface as

(3.13)

-1

27 d(b

N(E,9) = In[u(E, 6)] {/0 1 + tan? f[cos? ¢ + Esin® ¢] } (3:14)

Figure 4a shows the numerically computed values of (3.14). For E =1 we have N =0
indicating that a vortex with circular stream lines is always stable. The modes take the
form of Kelvin waves which rotate about the magnetic field with a frequency 22 cos 0 (see
e.g. Greenspan 1968). At E > 1, the flow becomes unstable with respect to perturba-
tions located within a band 6_(FE) < 6 < 6, (E). Notice that the location of this unstable
band is the same as in the nonmagnetic problem since it is determined by the zeros of
In[u(E, 0)]. In particular, this band originates at § = 7/3 (Bayly 1986). For a given value
of E > 1 the maximum of N(E,0) over all 8 in the unstable band defines the critical
magnetic interaction parameter N.(E) and a critical angle 6.(E). These quantities are
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FIGURE 4. Stability of an unbounded strained vortex. (a), Neutral magnetic interaction param-
eter (3.14) as a function of eccentricity F and angle 6 between the wavenumber vector k of the
perturbations and the axis of the vortex. (b) and (¢), critical interaction parameter N, and 6.
as functions of E.

plotted in figure 4b and c. Figure 4b shows that N, increases rapidly with increasing ec-
centricity while the critical angle 6, stays in the vicinity of 7/3. The monotonic increase
of the critical interaction parameter implies that strongly elliptical (almost sheet-like)
structures are particularly prone to instability. Having in mind that the nonlinear evo-
lution of initially circular vortices governed by the two-dimensional Euler equation (3.2)
always leads to the generation of strongly elongated vortex sheets, we can conclude that
the two-dimensional evolution proceeds in a way as to make the system more susceptible
to the elliptical instability. The fact that 6, ~ 7/3 may seem counterintuitive, as one
usually expects in MHD that unstable structures have a tendency to align with the mag-
netic field (§ — m/2). However, it should be noticed that €. is monotonically increasing
and probably asymptotes towards /2.

Our stability result can be also viewed from another perspective. In a given magnetic
field any forced two-dimensional flow will eventually become unstable, once the vorticity
amplitude has reached a sufficiently high level €2 such that N falls below its critical value
and the system becomes three-dimensionally unstable.

3.2. Instability of motion parallel to the magnetic field

In purely two-dimensional flow the velocity component parallel to the magnetic field
behaves like a passive scalar, transported by the velocity U(z,y,t), cf. equation (3.2).
Such evolution is known to produce steep gradients of W(z,y,t) [see e.g. Kraichnan &
Montgomery (1980), Lesieur (1990)]. Since the archetype of such structures is a single
vortex sheet, which is known to undergo a Kelvin-Helmholtz instability, we will discuss

the stability of the flow
W(z) = Up—

o (3.15)
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under the influence of the magnetic field. This problem, along with more general unidi-
rectional velocity fields, was originally considered by Drazin (1960). However, the spatial
structure of the unstable modes were not investigated there and is therefore the central
focus of the discussion given below. Infinitesimal perturbations u superimposed upon the
basic flow (3.15) are governed by the linearized equation

2
Ou WB_u + uwﬂez = —EVp - aA_la—g,
p 0z

ot * 0z dx
Squire’s theorem, which holds for flow in a parallel magnetic field (Michael 1953; Stuart
1954), permits one to reduce the analysis to two-dimensional perturbations of the form
u = (u,0,w). They can be decomposed into normal modes according to

V-u=0. (3.16)

u(z, z,t) = 4(z) - explik(z — ct)], . .. (3.17)

After introducing a stream function 1/3 via 4 = ’L'k’(/AJ and w = —ddA)/ dz, nondimensional
variables via U = UgUs,, © = z./k, ¢ = Upcs, t = t' x /Upk, an interaction parameter
N = 0B?/pUyk, and dropping the asterisk, it can be shown (Drazin 1960) that the
complex wave velocity c¢ is determined by the third-order polynomial equation

N
—ic(1+c2) + Z(l +3¢?) = 0. (3.18)

The normal mode for z > 0 is given by

i (x) = exp (—x\/ 1- z‘i’l) (3.19)

where it is assumed that the square root with the positive real part has been taken.

Drazin (1960) has demonstrated that all three roots of equation (3.18) are purely
imaginary and that one of the solutions has always positive imaginary part, but he
did not explicitly calculate ¢(N) and ¥(z). Figure 5a shows the imaginary parts of the
three roots. The wavenumber k& does not explicitly appear in the solution because it
represents the only characteristic length scale of the problem and has therefore been
used to nondimensionalize the equations. However, the wavenumber enters the definition
of N.

For each value of N there are two stable and one unstable solutions. When N=0 we re-
cover the classical Kelvin-Helmholtz instability with ¢ = 4. For N > 0 the imaginary part
of the solution originating from ¢ = i always remains positive which implies that the vor-
tex sheet is unstable for arbitrarily strong magnetic fields. The modes with small N, which
correspond to small perturbation wavelengths and small magnetic fields are growing
fastest, while the modes with large N, corresponding to large scales and strong magnetic
fields grow slowest. The asymptotic behavior of the wave velocity for the unstable mode is
c=1i(1-N/4) for N << 1and ¢ =i/+/(3) for N >> 1. The spatial structure of the un-
stable modes is best revealed by the stream function ¢ (z, z,t) = Re{t(x)-expli(z — ct)]}
(nondimensional variables) which, for ¢t = 0, is (see figures 5b and 5c¢)

Y(x, z) = exp [— (1 + g) w] cos [—ga: + z] for N <1 (3.20)

1/2 1/2
Y(z,2) = exp l—31/4 (%) x] cos l—33/4 (%) z+z| for N>1 (3.21)
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FIGURE 5. Instability of a vortex sheet. (a), Solid lines - roots of the dispersion equation (3.18).

Dashed lines - asymptotic limits +1/3'/2, —3N/4. (b), Streamfunction of the unstable mode at
N <1 (3.20). (c¢), Streamfunction of the unstable mode at N > 1 (3.21).

The unstable modes for large N have an aspect ratio z/x ~ N'/? as is characteristic of
MHD flows in strong magnetic fields.
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